皇冠app官方版下载安装

打开APP

eLife:揭示蛋白Siglec-1在HIV的捕获和传播中起着重要作用

在一项新的研究中,来自西班牙多个研究机构的研究人员描述了树突细胞中捕获HIV-1病毒的机制,以及Siglec-1在捕获和转运病毒颗粒中发挥的作用。

2023-04-30

Nature:揭示PI3Kβ控制PTEN缺陷乳腺癌的免疫逃避机制

在一项新的研究中,来自美国丹娜-法伯癌症研究所的研究人员阐明了PTEN缺陷乳腺癌的机制途径,并成功测试了一种对抗因肿瘤逃避免疫系统带来的下游影响的方法。他们详细说明了PTEN的一般肿瘤抑制作用和PTE

2023-04-30

皇冠app官方版下载安装:Mol Cell:揭示细菌产生抗生素耐药性新机制

抗生素耐药性是一个全球性的健康威胁。仅在2019年,全世界估计有130万人的死亡归因于抗生素耐药性的细菌感染。来自美国贝勒医学院的研究人员希望为这个日益严重的问题贡献一个解决方案,他们一直在研究在分子

2023-04-30

皇冠app官方版下载安装:Science: 开发出基于强化学习的蛋白结构设计方法

在一项新的研究中,来自美国华盛顿大学的研究人员成功地将强化学习(reinforcement learning)应用于分子皇冠app官方版下载安装学的挑战。他们开发出一种强大的新蛋白设计软件,该软件改编自一种在国际象棋和围

2023-04-30

Nature子刊:先导编辑有望安全有效地治疗镰状细胞病

在一项新的研究中,来自美国圣犹大儿童研究医院和布罗德研究所的研究人员表明作为一种精确的基因组编辑方法,先导编辑可以将SCD患者细胞中突变的血红蛋白基因改回到它们的正常形式。

2023-04-30

皇冠app官方版下载安装:PNAS:新方法让内耳中的毛细胞再生,有望治疗听力损失

医学界一直没有找到有效的听力损失治疗方法,因为一旦内耳中称为毛细胞(hair cell)的感觉细胞遭受损坏或破坏,它们就无法再生。毛细胞的这种损失,可能是由老化、噪音暴露和其他因素造成的,使个人的听力

2023-04-30

皇冠app官方版下载安装:2023年4月Cell期刊精华

2023年4月份即将结束,4月份Cell期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。

2023-04-29

皇冠app官方版下载安装:Nature:重大进展!揭示黑色素细胞干细胞困在毛囊隆起中竟会导致毛发变白

一项新的研究显示某些干细胞具有在毛囊的不同生长区室之间移动的独特能力,但随着人们年龄的增长,它们会被困住,因而失去了成熟为色素细胞和维持毛发颜色的能力。相关研究结果于2023年4月19日在线发表在Na

2023-04-28

Science:重大进展!揭示孤儿受体GPR158是一种代谢型甘氨酸受体,有望开发出更好的抑郁症治疗方法

在一项新的研究中,来自美国佛罗里达大学斯克里普斯皇冠app官方版下载安装医学研究所的研究人员一种常见的氨基酸---甘氨酸---能够向大脑传递一种“减速”信号,可能导致一些人的重度抑郁症、焦虑症和其

2023-04-28

皇冠app官方版下载安装:多篇重要研究成果解读近期科学家在机体肠道菌群研究领域取得的新进展!

如今大量研究证据表明,机体肠道菌群对于人类健康非常重要,且与多种疾病的发生直接相关,本文中,小编整理了科学家们近期在肠道菌群研究领域取得的新进展,分享给大家!

2023-04-28

皇冠app官方版下载安装:2023年4月Science期刊精华

2023年4月份即将结束,4月份Science期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。

2023-04-28

皇冠app官方版下载安装:Cancer Discov:揭示高水平的SRSF1蛋白会导致胰腺炎,并启动胰腺癌产生

在一项新的研究中,美国研究人员发现,高水平的SRSF1会导致胰腺炎。这就启动了PDAC肿瘤的产生。相关研究结果于2023年4月26日在线发表在Cancer Discovery期刊上。

2023-04-28

皇冠app官方版下载安装:Nature:揭示神经元活动在星形胶质细胞的形态发生中起着至关重要的作用

在一项新的研究中,来自美国贝勒医学院的研究人员揭开了使星形胶质细胞具有特殊的浓密形状的过程,这对大脑功能来说是至关重要的。他们指出神经元活动对于星形胶质细胞形成其复杂的形状是必要和充分的。

2023-04-28

Science:构建出迄今为止最大规模的健康人体组织中合子后基因组突变图谱

在一项新的研究中,来自美国俄勒冈健康与科学大学和华盛顿大学的研究人员构建出有史以来规模最大的健康人体组织中合子后基因组突变图谱---这一科学进步可能为诊断和治疗遗传疾病打开新的途径。

2023-04-28

皇冠app官方版下载安装:Nature:人类核糖体解码mRNA速度比细菌慢10倍,但更准确

在一项新的研究中,来自美国圣犹达儿童研究医院的研究人员揭示人类核糖体解码信使RNA(mRNA)的速度比细菌核糖体慢10倍,但解码更准确。他们组合使用了领域领先的结构皇冠app官方版下载安装学方法来更好地了解核糖体的工作原

2023-04-28